實測|哪款AI整理資料最厲害?評比ChatGPT 4o、Copilot、NotebookLM文本閱讀能力
實測|哪款AI整理資料最厲害?評比ChatGPT 4o、Copilot、NotebookLM文本閱讀能力

無論所在產業是軟體、硬體,還是屬於生產、零售或行銷,各行各業都必須隨時瞭解當今趨勢,以便跟上產業脈動。許多從業人員除了每日追蹤國內外新聞、參加產業研討會,也會藉由閱讀年度白皮書、論文等研究調查內容,來跟上產業趨勢。

然而,研究報告往往數十頁、數百頁起跳,在時間有限的情況下,是否可以運用 AI 來協助我們快速理解內容?使用時,又該注意哪些要點?本文將評比 ChatGPT 4o、Copilot、NotebookLM 3 款 AI 工具的文本閱讀能力,實測哪款 AI 最適合做為資料整理幫手,並嘗試提出合理的協作模式。

本次使用 SHOPLINE 的《2024 品牌團購全攻略》做為基礎文本,實測過程使用完全相同的資料來源、prompt,比對 ChatGPT 4o、Copilot、NotebookLM 三款 AI 的回答策略、深度與正確性。

為了符合不同性質的文本理解需求,實測將分為 3 個階段,依指令的複雜性,循序漸進進行測試:

  • 第一階段「提供文本細節」:詢問資料中明確提及的數據。
  • 第二階段「提出洞察分析」:賦予 AI 特定職位與使用情境,要求整理整份資料的關鍵洞察。
  • 第三階段「跨文本整合」:加入第二份文本《2024 台灣網紅行銷與社群趨勢洞察報告》,要求 AI 進行跨文本的整合,比對 2 份文本的相似與相異處。

第一階段:提供文本細節

第一階段從最簡單的資訊確認開始,詢問《2024 品牌團購全攻略》明確提及的「團購成長數據」。

prompt:請問今年臺灣團購的成長狀況如何?請附上數據佐證。

ChatGPT 4o

1-ChatGPT.jpg
圖/ 圖截自 ChatGPT

ChatGPT 4o 的回答簡潔有力,單純呈現團購市場的數據增長。

Copilot

1-Copilot.jpg
圖/ 圖截自 Copilot

Copilot 除了列出成長數據之外,另外納入文本中「各產業的團購表現」。

NotebookLM

1-NotebookLM.jpg
圖/ 圖截自 NotebookLM

NotebookLM 除了列出成長數據之外,另外分析了文本中提到「可能導致團購市場增長的原因」。特別的是,NotebookLM 主動提醒使用者需注意資料來源的數據計算方式。

整體而言,三款 AI 的資訊辨認能力都不錯,數據也正確無誤,但是回答的深度有所不同:ChatGPT 4o 的回答較為簡潔、直接明瞭,僅回答問題本身;Copilot、NotebookLM 則是更進一步,透過連結整份資料的不同內容,做出更具深度的回覆。

經過來回實測,發現 Copilot 的「資訊架構」能力較強,擅長將資料歸納成層級分明的結構化資料; NotebookLM 則是「批判思考」能力較強,除了列出資料內容外,往往會做出批評或提醒,例如點出某數據的調查方式可能不夠公允或完整等。

在第一階段,若是需要整理資料內容,推薦生成速度較快的 ChatGPT 4o,或是資訊層級明確的 Copilot;若是需要進行進一步的分析,則建議使用會引導使用者思考的 NotebookLM。

第二階段:提出洞察分析

第二階段賦予 AI「品牌行銷顧問」的角色,任務為提供重要的產業趨勢與相關數據給客戶參考,藉此瞭解 AI 推理使用者需求的能力。

prompt:你是一名專業的品牌行銷顧問,擅長為品牌規劃銷售策略,提高客戶營收、開展新的商業可能性。目前取得一份《2024 品牌團購全攻略》資料,需要從中擷取並整理出三個最重要的洞察,提供重要的產業趨勢與相關數據給客戶參考。

ChatGPT 4o

2-ChatGPT.jpg
圖/ 圖截自 ChatGPT

ChatGPT 4o 提出的三大洞察分為「團購經濟成長潛力」、「品牌電商團購的顯著成長」與「與 KOL 合作的效果顯著」,每項洞察皆附上 1 至 2 項相關數據。與第一階段相同,ChatGPT 4o 提供的內容是三者之中最簡短的。

Copilot

2-Copilot.jpg
圖/ 圖截自 Copilot

Copilot 提出的三大洞察分別為「團購市場的巨大成長潛力」、「年輕女性消費者主導團購市場」與「品牌電商團購的顯著成長」。相比 ChatGPT 4o,Copilot 增加了一個資料階層,引用的數據資料也較多。

NotebookLM

2-NotebookLM.jpg
圖/ 圖截自 NotebookLM

NotebookLM 提出的三大洞察分別為「團購市場持續穩定成長,品牌電商團購表現尤其亮眼」、「網紅/KOL 合作是品牌電商團購的主流趨勢」與「品牌商家利用團購達成多重目標,包含提升業績、增加品牌曝光以及接觸精準受眾」。

NotebookLM 是三款 AI 中回答篇幅最長的,並且在每項洞察後都撰寫出「分析」,進一步說明使用者應該如何解讀各項洞察內容。

與第一階段的結果類似,ChatGPT 4o 回答最為直接簡潔,Copilot 回答的資訊結構清晰,NotebookLM 除了整理出資料內容,更針對數據提出行動方針。雖然 NotebookLM 的分析其實不算深入,但整體而言,編輯認為 NotebookLM 最符合 prompt 所提供的「使用情境」,因此實用性、完整度最高。

第三階段:跨文本整合

在第三階段,AI 除了需要處理《2024 品牌團購全攻略》,還需要整合《2024 台灣網紅行銷與社群趨勢洞察報告》,並提出兩份資料的整合與分析。本次要求 AI 提供較初階的「相似/相異」資料比對。

prompt:你是一名專業的品牌行銷顧問,擅長為品牌規劃銷售策略,提高客戶營收、開展新的商業可能性。目前取得《2024品牌團購全攻略》、《2024 台灣網紅行銷與社群趨勢洞察報告》二份資料。你的任務是比對兩份資料,提出兩份中相似與相異的趨勢觀察或數據。

ChatGPT 4o

3-ChatGPT.jpg
圖/ 圖截自 ChatGPT

ChatGPT 4o的回答中規中矩,純粹抓出兩份資料相似的大方向概念,實際提及的數據資料不多。

Copilot

3-Copilot.jpg
圖/ 圖截自 Copilot

Copilot 依然十分堅持資料階層的清晰程度,然而內容方向比 ChatGPT 4o 更加模糊,數據資料也更少。

NotebookLM

3-NotebookLM.jpg
圖/ 圖截自 NotebookLM

NotebookLM 提供的內容依舊最長,抓出的相似處比 ChatGPT 4o、Copilot 多出一點(網紅/KOL合作的必要性),看起來整體分析更加完整。

乍看會認為 ChatGPT 4o 的回答頗為敷衍,然而仔細觀察會發現,ChatGPT 4o 回答雖簡短,卻是唯一在數據歸納與推理方面沒有出錯的 AI。

Copilot 回覆中出現錯誤的資訊來源與推理。回覆中寫到:「《2024 品牌團購全攻略》:提到疫情期間消費者購物習慣的改變,47.6% 的消費者轉向網路購物,這推動了網紅團購的發展」,然而《2024 品牌團購全攻略》全篇研究均未提及此數據。經確認,此數據來自臺灣趨勢調查發布之《第三級警戒下防疫新生活調查》,實為第三級警戒下有 47.6% 的民眾從實體轉換為網路購買,此外,調查也並未提及此數據與網紅團購之間的關係。

NotebookLM 也出現錯誤歸納的問題。回覆中提到「兩份報告都明確指出團購市場的持續增長」,然而《2024 台灣網紅行銷與社群趨勢洞察報告》其實僅提及網紅廣告預算上升,並未討論團購市場。或許網紅廣告預算上升、團購市場持續增長兩者確實有正相關,但 NotebookLM 的歸納依然有不小的問題。

在跨文本整合這方面,ChatGPT 4o 的整合內容中規中矩;Copilot、NotebookLM 則是出現不少東拼西湊的情況,並且出問題的部分十分細微,使用者很難一眼就能辨識出來,需要多加留意、仔細檢查。

目前判斷 AI 仍然會出現錯誤,並且若沒有細心查證,細微的錯誤非常容易被忽略。因此, 目前不推薦純粹倚靠 AI 來進行跨文本的整合分析。

3 款 AI 工具,該怎麼選?如何合作?

經過本次實測,《未來商務》編輯想要再度提醒讀者,AI 並非完美,而是如同人類一樣會犯錯,如何找出最合適的協作模式,才是我們目前需要面對的挑戰。因此,目前工作者與 AI 協作時,必須將「查證」列為必備過程;此外,下 prompt 時,可以加入「請勿使用文章中未提及的資料」做為提醒,盡量避免 AI 胡亂生成或引用其他無關資料。

那麼,針對閱讀文本、整理資料類型的工作,我們應該如何在 3 款不盡完美的 AI 工具中做出選擇?綜合考量使用方便性、完整性與分析能力,若是僅需簡單、快速確認具體數據,推薦使用 ChatGPT 4o;若是需要較複雜的資訊整理,《未來商務》編輯目前傾向使用 NotebookLM,不僅因為它的回答往往完整性較高,關鍵決勝點在於 NotebookLM 會自動抓出每個數據的參考內容,方便使用者對照查證。

NotebookLM對照.jpg
NotebookLM 會自動連結至資料來源處,方便使用者自行對照查證。
圖/ 圖截自 NotebookLM
ChatGPT 4o Copilot NotebookLM
回覆生成速度 ●●● ●●○ ●○○
單篇研究的資訊正確性 ●●● ●●● ●●●
多篇研究的資訊正確性 ●●● ●○○ ●●○
資訊分析能力 ●○○ ●●○ ●●●
跨文本整合能力 ●●○ ●○○ ●●○
人工查證便利性 ●○○ ●○○ ●●●

延伸閱讀:實測|AI搜尋引擎Perplexity、Liner、Felo收集資料哪家強?這款還能做社群搜尋!
微軟Microsoft 365個人及家用版能用Copilot了!3步驟快速上手「AI助理」

本文授權轉載自:未來商務

往下滑看下一篇文章
博弘雲端打造金融業專屬 AI 解決方案 賦能金融產業實現智慧轉型!
博弘雲端打造金融業專屬 AI 解決方案 賦能金融產業實現智慧轉型!

從流程再造、智能客服到科技防詐,AI 正在一步步改變台灣金融業的樣貌。根據金管會「金融業者及周邊單位應用人工智慧」調查結果,金融業者導入AI與生成式AI的比例已從29%提升至33%,顯示金融業對AI應用的需求正持續升溫,而AWS亞太(台北)區域的正式啟用,更將加速這股成長力道,讓AI躍升為金融創新的核心引擎,推動整個產業快速邁向新局。

在這股潮流下,博弘雲端作為台灣第一家與AWS簽署台北區域戰略合作協議(New Region Strategic Collaboration Agreement,SCA)的雲端解決方案專家,如何協助金融業快速導入創新AI應用,讓「智慧金融」能夠真正落地在各個金融場景中?

對此,博弘雲端台灣暨東南亞事業中心副總經理陳亭竹給出的答案很明確:關鍵在於從痛點出發,讓金融業能夠以更低的門檻達成數據上雲與導入AI應用的目標。

標準化 × 客製化,雙管齊下加速金融AI真正落地

陳亭竹進一步指出,金融業在推動雲端與AI應用時,普遍面臨合法合規、AI倫理風險、人才不足與組織變革等四大挑戰。對此,博弘雲端提供產業客製化AI解決方案,滿足金融業在AI與數據應用上的多元需求,進而加速AI應用落地。

「要讓AI應用在金融業真正落地,雲服務業者的客製化能力是關鍵。」博弘雲端台灣暨東南亞事業中心技術處長孫正忠強調,因為每家金融業對上雲和AI應用的需求並不相同,甚至對AI 技術的要求與精準度都有不同期待。而標準化產品雖能快速導入,卻難以完全貼合每位客戶的營運場景與精細需求,唯有結合客製化服務,才能真正滿足金融業在AI與數據應用上的高標準,並符合大型金融客戶的嚴格驗收要求。

因此,博弘雲端推出產業客製化AI解決方案,建構在標準化解決方案的架構之上,進一步依照客戶需求進行微調。不僅能讓 AI 回答更加精確,也能更貼近終端客戶的實際需求,無論是篩選資料、優化決策,甚至提供行銷策略建議,都能展現更高的效益。

除了透過客製化服務滿足金融業者AI與數據應用上的多元需求,博弘雲端亦推出標準化產品驅動金融產業AI革新。從”AICOM”提供的新世代雲智能管理功能,賦能金融IT部門一站式管理雲端資源、即時掌握AI訓練資源運用狀態;到”LEMMA”提供的 AI企業知識代理,藉由LLM (大型語言模型) 摘要與整理重點、大幅減少人工查詢資料的時間,這些產品不僅加乘金融業者採用AI的效益,更成為推動產業升級的關鍵方程式。

RD099049.jpg
博弘雲端台灣暨東南亞事業中心副總經理 / 陳亭竹表示:要讓AI應用在金融業真正落地,雲服務業者的客製化能力是關鍵。唯有結合客製化服務,才能真正滿足金融業在AI與數據應用上的高標準,並符合大型金融客戶的嚴格驗收要求。
圖/ 數位時代 拍攝

售前 × 數據雙團隊,一站式滿足數據處理和AI應用需求

金融產業的AI應用百百種,博弘雲端不只提供產業客製化解決方案,更透過技術團隊的深度參與來強化客製化程度。首先是售前技術團隊,該團隊整合公司多年服務大型客戶的經驗與專業人才,能在專案初期便與客戶進行需求訪談與技術交流,並據此繪製完整的系統架構圖,確保AI應用精準契合需求,大幅提升專案成功落地的機率。

其次是數據團隊,涵蓋數據工程師、數據分析師與數據科學家三種不同職能,能與售前技術團隊的需求分析與架構設計緊密銜接,一站式滿足金融業從數據處理到應用的完整需求。

博弘雲端台灣AWS事業處業務資深處長郭仁傑進一步說明二個團隊的具體運作模式。售前技術團隊在完成需求分析與架構圖後,數據工程師會協助金融業將地端資料搬遷到雲端資料倉儲,並確保數據的正規化與可用性;接著由數據分析師統整數據並建立戰情室、商業智慧分析等應用,幫助客戶快速掌握營運數據;最後由數據科學家根據實際應用情境選擇或開發適合的AI模型,實現提升營運效率或優化客戶體驗的目標。「經過概念驗證與專案的執行,金融業普遍能提升5倍以上的資料處理效率,運用AI提升10~50%不等的生產力」,郭仁傑強調。

RD099024.jpg
「要讓AI應用在金融業真正落地,雲服務業者的客製化能力是關鍵。」博弘雲端台灣暨東南亞事業中心技術處長 / 孫正忠強調
圖/ 數位時代 拍攝

攜手 AWS 與生態系戰略夥伴,全面備戰金融業轉型需求

除了內部團隊的緊密協作,博弘雲端也積極深化與AWS和第三方夥伴的合作關係,加強解決方案的廣度與深度,確保能更全面回應金融業多樣化的需求。

「客戶至上一直是博弘雲端的企業文化,」陳亭竹表示,博弘雲端很早之前就洞察到金融業數位轉型的商機,加上AWS當時正如火如荼推進亞太(台北)區域的落地,因而與其展開台北區域戰略合作協議的討論,並於2025年7月正式簽訂,成為台灣第一家簽署該協議的AWS核心級諮詢夥伴。

「這是一份區域級的合作協議,必須要有足夠紮實的市場經驗和具代表性的客戶導入案例,才能獲得AWS的認可與信任,」陳亭竹強調,這份協議不僅代表AWS對博弘雲端實力的高度肯定,更意味著博弘雲端可以進一步放大服務能量,串聯更多生態圈夥伴,全面支援金融業的數位轉型。

由於金融業在上雲時,對資安防禦、效能監測、數據管理等面向,可能都有不同需求,博弘雲端自成立以來,便持續與不同領域的夥伴攜手合作,包括Palo Alto Networks、Databricks及MongoDB等國際級解決方案廠商,滿足金融業在上雲時的特殊需求。而隨著與AWS簽訂台北區域戰略合作協議,博弘雲端得以進一步擴大合作生態圈,為金融業打造更完整的雲端與AI解決方案,全力加速其上雲與創新進程。

專業技術建立信任,博弘雲端成金融業轉型首選夥伴

憑藉卓越的客製化服務能力、與AWS的緊密合作關係及多元的生態圈夥伴,讓博弘雲端在金融領域展現亮眼成果,不只在技術面持續採用創新科技賦能金融業成功轉型,更透過技術專業力獲得客戶高度信賴,某大型金融業客戶在數據上雲專案結束後,主動表示希望繼續合作。

郭仁傑說明,博弘雲端自3年前開始,即協助該客戶將地端數據逐步上雲,並導入Data Hub建立完善的資料治理(Data Governance)機制。隨著數據上雲後的效益逐步展現,不僅吸引同集團內其他子公司與海外據點相繼啟動數據上雲計劃,更將合作期間展延至7年,藉助博弘雲端的技術與服務能量,持續深化雲端與AI應用,推動整個集團的數位創新藍圖。

1757919697308.jpg
郭仁傑說明,博弘雲端自3年前開始,即協助該客戶將地端數據逐步上雲,並導入Data Hub建立完善的資料治理(Data Governance)機制。
圖/ 數位時代 拍攝

目前除了金融業之外,博弘雲端在製造、零售和公部門也累積了豐富的雲端技術導入經驗。展望未來,博弘雲端除了持續與AWS維持緊密合作、不斷精進雲端技術能力外,更將全面強化在資安託管服務 (Managed Security Services Provider, MSSP) 與技術生態圈的戰略布局,並積極拓展東南亞市場,成為台灣雲端服務業進軍國際的領航者。不僅向海外輸出台灣的成功經驗,更將成為驅動東南亞地區數位轉型的關鍵力量。

更多金融業上雲案例:立即與博弘雲端專業團隊討論

https://www.nextlink.cloud/contact/

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓