一直以來都會看到很多進階、但很複雜的 LLMs(大型語言模型)的使用心得分享。然而,在我看過的眾多 prompt 教學當中,只有 Google 針對 Workspace 的教學我讀完後真的記得住。不是因為它多麼深奧或創新,而是是因為它夠簡單。
Google 的教學文件主要是應用在 Gemini for Workspace,但我認為適用於所有 LLM。該教學之所以讓我印象深刻,是因為它的「最高指導原則」非常符合我追求「極簡」的需求。整份文件長達 68 頁,舉了 11 種生產力情境的範例。然而,我覺得只要謹記以下原則就夠:
- 使用自然語言就好,想像是在跟人說話。
- 講話要具體,且反覆說明你的需求。
- 務必用動詞來清楚表達任務需求。
- 盡可能提供充足的背景資訊。
- 用語簡潔,不要太複雜或用太多行話。
- 不要覺得自己是在下指令,而是在「對話」。
- 不要用一個 prompt 執行多個任務,拆開來。
為什麼掌握這些原則很重要?因為絕大多數的人做不到。 Google 提供了一個關鍵數據:最有效的 prompt 平均是 21 個字,但多數人的 prompt 都少於 9 個字。 換句話說,光是「能把話講清楚」可能就已經是前四分之一(甚至更高)的使用者了。
除了原則以外,Google 還教會我一個「必殺絕招」:在真正給出 prompt 以前,先用 LLM 作為 prompt 編輯器,再把它改寫後的 prompt 貼去執行。例如:
請將 [原始 prompt 文字] 寫成一個厲害的 prompt(power prompt),並附上修改建議與解釋。
甚至可以把這個步驟更往前一個階段,在請 LLM 改寫 prompt 以前,先問它:
[原始 prompt 文字] 這是我的需求,你有什麼問題想問我,以便你改寫一個更好的版本?
最後,Google 也給了一個通用的最佳解公式,它認為一個有效的提示最好包含四個組成:
- 角色設定:要 LLM 調度哪些領域知識
- 任務:你想完成什麼目標
- 背景:任務的起源/目標的限制/涉及的人士...等
- 格式:輸出類型、編排格式
面對日新月異的生成式 AI 技術,只學 Google Gemini、甚至只學 Workspace 情境下的應用肯定不夠。但究竟怎樣才足夠?我認為回答這個問題以前,應該 先定義「需求情況」 。在一般情況下,我認為以下三個能力遠比掌握什麼新技術、學習什麼新工具重要:
- 動機:「想」做什麼。模型能力的天花板通常就是操作者本身。
- 思考:「如何」做,包括任務拆解、流程設計、以及精準的表達。
- 校驗:是否具備足夠的常識(或領域知識)來檢查AI生成的結果。
這讓我想起一直以來的一個中心思想:如果眼前當下沒有一定要/想/好奇的事,或必須要改善效率的任務,就會避免去「過度研究」生成式 AI 工具。
因為後來發現一個很殘酷的現實:AI 模型與工具的進化速度「遠遠超過」個人的研究速度,所以 X 上才會每天都有人說「OOO 又顛覆了整個世界」。
每個人的「過度」都不一樣,這是個動態標準。例如,不會寫程式的麻瓜跟會寫程式的巫師,在判斷一些應用方式時的標準當然就不同。我自己怎麼衡量「過度」研究?
用過度偏離自然語言的方式跟LLM溝通。理由是:如果大部分 AI 科學家的目標都是發展 AGI,那在人機互動上就不會走回頭路。
必須花大量時間(主要都發生在反覆測試)去貼近標準化目標。理由是:如果 AI 公司想賺錢,那麼肯定會把標準化輸出列為核心商業目標。我不是躺平等更好的解決方案,就是調整自己的輸出目標。
必須花大量時間縫合多種工具與方法來實現一項功能。理由是:想賺錢的人很多,產品化的速度只會更快不會更慢。
這個邏輯在 AI 工具的使用上特別明顯。與其花大量時間研究如何讓某個 prompt 達到 100 分的效果,不如先讓它穩定達到 80 分,然後等技術自然進步。畢竟,今天 Claude Opus 4 的隨便問可能就比三個月前精心調教的 Claude Opus 3 更好用。
模型以「順手」為主、 牢記 21 字原則
總而言之,如今我一開始會先定義「必要性」(想做/要做/得做);若有必要,才依照個人能力與時間資源來衡量適當的投入程度。這個框架可以應用在AI工具選擇的每個層面:
- 模型選擇: 大部分情況下,用最順手、最容易取得的就好。除非真的遇到明確的能力瓶頸,才需要去研究更強的模型。
- Prompt 優化: 先用自然語言把需求說清楚,如果結果不滿意,再考慮是否要學習更進階的技巧。謹記 Google 文件的提醒:多數人連 21 個字的平均都沒達到。
- 工具整合: 優先選擇單一工具能解決的方案,而非追求多工具的複雜整合。產品化的趨勢會讓好的解決方案越來越多、越來越簡單。
- 技學能習: 直到 AGI 問世以前,需求定義、思考架構、校驗能力這三項基本功還是很重要的。但需不需要深度培養...我是已經放棄說什麼「會用 AI 的人將淘汰不會用的人」這類大師發言,每個人依照自己生活所需去發展必要的技能就好。
現在真的是個非常難做長期規劃的時代。每天都有新工具、新模型、新功能推出,每個都宣稱自己是「革命性突破」。與其說「擺爛」,我現在盡量讓自已處於一種「適度參與」的狀態:保持好奇,拒絕焦慮。
延伸閱讀:如何教生成式AI掌控搜尋效率?《哈佛商業評論》專家親授,3招搞懂指令寫法
NotebookLM再升級!新增AI「影片摘要」功能:如何使用?實測一次看