矽光子是什麼?真正的矽光子概念股有哪些?圖解矽光子原理
矽光子是什麼?真正的矽光子概念股有哪些?圖解矽光子原理

生成式人工智慧需求看漲,帶動資料傳輸需求,再加上台積電在半導體展上分享矽光子(SiPh:Silicon Photonics)技術進度,讓矽光子成為一躍成市場當紅炸子雞,矽光子概念股也獲得高度關注,即便AI概念股近期熄火,矽光子概念股仍逆勢發光。台積電在法說會上,總裁魏哲家也提到,當前成長中的需求都需要大量數據傳輸,台積電也著手研發矽光子技術多年,未來有望藉由矽光子技術,推出能源效率更好的晶片產品。

但究竟矽光子背後原理是什麼?怎樣的概念股,才算是「真正的」矽光子概念股呢?

什麼是矽光子(SiPh:Silicon photonics)?

目前的電腦都是使用電訊號進行資料運算,可以使用電訊號或光訊號進行資料傳輸,由於光訊號的頻寬比電訊號高出許多,因此資料中心的伺服器之間目前大多使用光訊號傳輸,伺服器會先經由「光發射模組」將電訊號的「開與關」轉換成光訊號的「亮與暗」再送入光纖,傳送到接收端再經由「光接收模組」將光訊號的「亮與暗」轉換成電訊號的「開與關」,如下圖所示。

矽光子原理_傳送端使用光發射模組,接收端使用光接收模組。.jpg
圖/ 曲建仲

可以傳遞電磁波訊號的介質稱為「波導(Waveguide)」,因為光是一種電磁波,因此可以傳導光的介質稱為「光波導(Optical waveguide)」,光纖(Fiber)是用來傳遞光訊號最基本的光學元件,因此光纖就是一種光波導,但是光通訊系統必須處理光訊號的分光、合光、切換、調變等,因此除了光纖以外,仍然需要其它可以處理光訊號的元件,我們稱為「光波導元件」或「積體光學(OIC:Optical Integrated Circuit)」。

製作積體光學元件的主要材料有「氧化矽(Silica)」與「矽(Silicon)」兩種:

** 氧化矽(Silica)** :折射率大約1.5,是石英或玻璃的主要成分,其中二氧化矽的單晶又稱為「石英(Quartz)」,二氧化矽的非晶又稱為「石英玻璃」,外觀呈透明無色,另外一種光學性質與氧化矽很像的材料是「玻璃(Glass)」,玻璃是氧化鉀、氧化鈉、氧化矽的混合物,外觀呈透明無色,由於是混合物,光穿透時損耗比較大,這些材料的光學性質都不錯,可以直接在上面製作折射率較大的光波導。

** 矽(Silicon)** :折射率大約3.5,就是晶圓廠使用的矽晶圓,雖然矽晶圓在外觀上不透明,看起來光波好像無法穿透,但是光通訊產業所使用的光源都是「紅外光」,紅外光可以穿透矽晶圓,只是損耗比較大而已,由於矽晶圓的製程比較成熟,所以許多公司都試著發展這種技術,使用矽晶圓做為光波導元件再整合其他主動與被動光學元件通稱為「矽光子(Silicon photonics)」。

簡單地說,目前產業上都是使用矽晶片來製作運算元件, 未來如果能夠把處理光訊號的「光波導元件」整合到矽晶片上,讓矽晶片同時處理電訊號的運算與光訊號的傳輸,就稱為「矽光子(Silicon photonics)」 ,可以縮小元件尺寸,減少耗電量,降低成本,但是目前這種矽光子元件門檻較高,技術還不成熟。

延伸閱讀:台積電:矽光子、消費性AI是新機會!魏哲家為何看好?

傳統光收發模組,是低階的封裝技術

目前商業上已經成熟量產的「光收發模組(Optical transceiver)」是結合「傳送光學子系統(TOSA)」與「接收光學子系統(ROSA)」。

傳送光學子系統(TOSA:Transmitter Optical Sub-Assembly) :將左側金手指輸入的電訊號,經由雷射驅動器來驅動雷射二極體(LD)轉換成光訊號,傳送到右側的光纖輸出。

接收光學子系統(ROSA:Receiver Optical Sub-Assembly) :將右側光纖輸入的光訊號,經由光偵測器(PD)與轉阻放大器(TIA)轉換成電訊號,傳送到左側的金手指輸出。

矽光子原理_傳統光收發模組的內部組成與外觀構造.jpg
傳統光收發模組的內部組成與外觀構造。
圖/ lumenci.com
矽光子原理2_傳統光收發模組的內部組成與外觀構造.jpg
傳統光收發模組的內部組成與外觀構造。
圖/ lumenci.com

由上圖可以看出,目前商業上已經成熟量產的光收發模組都是低階的封裝技術,用圖中綠色的印刷電路板(PCB)結合雷射二極體(LD)與光偵測器(PD)等元件,金屬走線距離長,元件尺寸大,耗電量高。而矽光子元件門檻較高,技術還不成熟,該怎麼辦呢?因此科學家想到,可以使用「先進封裝」的方式,把運算用的矽晶片與光收發模組包裝在一起,我們稱為「共同封裝光學(CPO:Co-Packaged Optics)」。

共同封裝光學(CPO),是矽光子的前哨站

傳統光交換機是將矽晶圓製作的數位交換晶片與光收發模組(Transceiver)使用印刷電路板(PCB)連接起來,交換晶片(黑色)與光收發模組(紅色)距離較遠,元件尺寸大耗電量高,如圖a所示;而共同封裝光學(CPO)是將矽晶圓製作的數位交換晶片(黑色)與光收發模組(紅色)直接利用先進封裝包裝在一起,元件尺寸小耗電量低,如圖b所示。

矽光子原理_傳統插拔式光收發模組(Transceiver)與共同封裝光學(CPO)示意圖.jpg
傳統插拔式光收發模組(Transceiver)與共同封裝光學(CPO)示意圖。
圖/ 工研院

而台積電很早就投入這個領域,針對數據中心市場推出了新型的先進封裝技術「緊湊通用光子引擎(COUPE:Compact Universal Photonic Engine)」。

下圖是思科(CISCO)與智邦(Accton)合作開發的光交換器,圖中的數位交換晶片就是使用共同封裝光學(CPO)技術將數位交換晶片與光收發模組包裝在一起,取代傳統的插拔式光收發模組,並以外接雷射的方式提供矽光子晶片光源,但是其中最關鍵的共同封裝光學技術大部分是掌握在國外廠商手中,例如英特爾(Intel)、博通(Broadcom)、Cisco/Luxtera/Lightwire/Acacia、Juniper/Aurrion等。

矽光子原理_使用共同封裝光學(CPO)製作的光交換機。.jpg
使用共同封裝光學CPO製作的光交換機。
圖/ 思科(CISCO)

矽光子可以應用在什麼領域?

矽光子(SiPh)技術泛指將許多原本是分立的電子元件與光學元件,利用成熟的矽晶圓與半導體製程,製作成微型化的晶片,用來取代傳統「光收發模組(Optical transceiver)」,目前主要應用在資料中心做為短距離傳輸資料,或是應用在長矩離光纖網路。

未來如果矽光子技術成熟,甚至可以取代現在的印刷電路板或導線載板上的銅導線,用光訊號取代電訊號,應用在晶片到晶片之間的資料傳輸,可以有效提高元件密度、縮小元件體積,增加傳輸速率,提高可靠性與良率,同時由於使用矽晶圓製作,可以兼具量產與成本優勢。

到底誰才是「矽光子概念股」?

由於矽光子元件門檻較高,技術還不成熟,所以會先以「共同封裝光學(CPO)」的方式實現,慢慢才會達成完全「矽光子」的終極目標。目前真正在設計或製作矽光子或CPO的,主要就是晶圓廠或封裝廠,例如台積電或日月光,由於CPO的產品才剛開始,要到2024或2025年才會放量。

而大家現在看到媒體上報導的「矽光子概念股」大部分是在做傳統光收發模組或元件的廠商。由於目前大部分資料中心仍然是使用傳統光收發模組,因此這些廠商最近業績成長主要是因為資料中心需求增加,和矽光子關係不大。

等到CPO開始放量,甚至矽光子技術成熟,將會取代傳統光收發模組,使傳統光收發模組用量大減,這些廠商如果技術沒有跟上,未來可能會慢慢被邊緣化,所以是利多還是利空必須個別判斷?千萬別再弄錯方向了唷!

延伸閱讀:達發科技掛牌!聯發科小金雞憑什麼拿下蘋果大單、吸引20萬股民抽籤?

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場)

責任編輯:林美欣

本網站內容未經允許,不得轉載。
往下滑看下一篇文章
全球最佳!中國附醫積極打造安全智慧醫院,亮眼表現獲 HIMSS肯定
全球最佳!中國附醫積極打造安全智慧醫院,亮眼表現獲 HIMSS肯定

為提供以病患為核心的醫療照護服務,中國醫藥大學附設醫院(以下簡稱中國附醫)早在數年前就展開智慧醫院布局,並獲得國內外獎項肯定、創下許多台灣第一。舉例來說,中國附醫不僅連續完成美國醫療資訊與管理系統學會(HIMSS)的 INFRAM Stage7認證、EMRAM Stage7認證、AMAM Stage6認證並獲得亞洲首座HIMSS Davies Award of Excellence大獎,更進一步獲得HIMSS「數位健康指標(Digital Health Indication,DHI)」全球最高成績殊榮。

中國附醫是如何辦到的?

中國醫藥大學附設醫院資訊副院長陳俊良面帶微笑的說:「在蔡長海董事長以及周德陽院長高瞻遠矚領導下,我們早在2021年就擘劃清楚的智慧醫療藍圖,還有專職單位負責各項工作,此外,還可以彈性因應業務需求敏捷展開跨部門合作。」舉例來說,在數據管理與應用這個領域,資訊室負責臨床醫療數據資料的蒐集,大數據中心則肩負巨量數據挖掘與應用,至於人工智慧中心則是將人工智慧技術應用到智慧醫療各個領域的關鍵推手。「在實踐智慧醫院這個旅程中,資訊室肩負數據治理重責,必須從(醫護)需求面、(數據)來源面、(安全/隱私)技術面等構面進行規劃與啟動相關實務。」

自由系統
圖/ 自由系統

從身分驗證管理到內部通訊,自由系統助中國附醫深化安全防護力

為發揮醫療數據的最大價值,中國附醫尤其重視資訊安全防禦,陳俊良表示:「第一前提是合規、因應資安法優化系統、數據、裝置設備與人員的安全性。」具體作法有二:首先是因應資安法以縱深防禦的方式持續強化對私有雲環境與設備的安全管理;其次是加強整體資安可視性與自由系統合作,由其協助導入微軟各項的解決方案,並提供資安監測與即時異常通報等服務,讓中國附醫可以更具效率與效能的方式過濾與發現異常事件。

中國醫藥大學附設醫院資訊室系統維護組組長李祥民進一步解釋:「資安威脅無所不在,過去幾年,勒索軟體威脅更是防不勝防,為了解決這個問題,光是保護數據資料還不夠,必須從身份、裝置、帳戶等多元角度切入,因此,微軟在2021年開始提供資安解決方案時,我們就開始評估有能力解決問題的廠商,決定合作廠商的原因有三:首先是原廠推薦,由原廠的角度評估廠商有解決問題的能力,其次是自由系統展現出的專業技術與符合客戶需求的服務;最後,同時也是最重要的是,他們可以提供即時監測並提供通報服務,極大程度緩解中國附醫在資安人力與能力的欠缺,讓我們可以更好的落實安全防護。」

因此,中國附醫順利在2022年導入微軟資安解決方案,而這,不僅提升了中國附醫的資安防護能力,例如分別在2022年跟2023年預先偵測異常事件並成功防堵來自外部的安全攻擊,也讓資訊同仁可以專注在核心業務上,極大化資訊與數據價值。良好的合作體驗也讓雙方合作關係進一步擴展到應用程式端的安全防護,例如,將地面郵件系統搬遷到微軟的雲端服務,藉此降低Email Server的維運成本與損壞風險,同時,優化帳戶登入管理等。

陳俊良表示:「過去幾年,資安威脅不減反增,但是,透過縱深防禦的強化並且經由合作廠商加強即時監控與協助行政通報等服務,我們可以逐步優化資訊安全防護能量,並成功讓異常事件的發生頻率下降,而這,也是中國附醫可以順利獲得HIMSS的INFRAM Stage7跟EMRAM Stage7等認證的關鍵原因之一,為此,後續將持續與合作夥伴共同努力、與時俱進的深化安全防護能力。」

自由系統
圖/ 自由系統

透過雲端身分驗證落實Single Sign On以提升縱深防禦能力

除了導入資安與雲端郵件之外,李祥民表示,中國附醫更於日前將雲端身分驗證跟院內簽核系統的登入機制彙整在一起,以優化登入安全。「接下來,我們會與自由系統合作,重新盤點、評估有哪些院級服務適合以Microsoft Azure AD進行單一登入與多因素驗證,藉此提升安全防護機制。」

自由系統業務經理許廷輔表示,資訊安全不可能一步到位,相反的,需要長期、動態的進行調整與優化,因此,需要組織上下齊心、一同落實安全防禦。「從2021年至今,我們發現,中國附醫不僅重視資訊安全,更身體力行、彈性敏捷的因應潛在威脅做出調整、改變,這是很難能可貴的地方,為進一步擴大成效,自由系統將針對中國附醫在(數據)資料安全與雲端服務等策略提供更多適合中國附醫的產品及服務。」

「智慧醫療、智慧醫院涉及的面向既廣且深,不可能單憑己力完成,需要專業的外部夥伴提供最佳支援與服務,我們很開心可以有自由系統這樣的夥伴,期待未來有更多合作火花,讓中國附醫可以一步一腳印的建構與完善安全智慧醫院布局。」關於中國附醫與自由系統的未來合作,陳俊良如是總結。

自由系統
圖/ 自由系統
本網站內容未經允許,不得轉載。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
台日半導體新局 全解讀
© 2024 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓