AI現在不只看得懂字面上的意思,還能理解字面意義背後的真實世界規則。
近期,一位歷史學者把一頁1758年的商人日記帳丟進Google的AI Studio,本想測試抄寫能力,卻看見模型主動推理出英制貨幣與重量的換算,將一串模糊的「145」還原為「14磅5盎司」,並精確對齊最終金額。
加拿大勞雷爾大學教授馬克·亨弗里斯(Mark Humphries)在專文中指出,Google AI Studio近期不定期出現的A/B測試,被認為是Gemini 3.0 Pro在推出前的測試版本。綜合他在上述歷史文件上的測試,亨弗里斯認為這款「未知Gemini模型」同時突破了「手寫文本最後一哩的準確度」與「視覺結合推理的隱性符號化」兩個老問題。
前者,是將手寫文字辨識(HTR)提升到專家級準確度,顯著壓低過去最難的「最後10%」錯誤(特別是名字、日期、金額、地名與不規則拼寫), 實測在排除歧義標點與大小寫後,達到字元錯誤率(CER)約0.56%、詞錯誤率(WER)約1.22%。
後者,則是模型在未被明確要求下,能把視覺辨識與情境推理結合,進行近似「符號推理」的一致性校驗與換算。
這兩點使亨弗里斯推論: 當模型不只把字「抄對」,還能連同上下文與世界規則「讀懂、驗算、自我更正」後,原本難用的歷史與實務檔案,將變成可檢索、可審核、可追溯的資料資產。
這意味著, 在需要高精度「視覺+合規推理」的各領域(史料、帳冊、醫療、法務、製造現場),都可能迎來可靠性的質變:從單純的轉錄,進階到基於現實世界規則的上下文理解。
最後一哩的準確度,卡住了AI的價值
手寫文字識別(HTR)是AI最古老的命題之一,從1966年的IBM機器讀字到近年的多模態LLM,進步穩定卻總在「最後10%」前止步。亨弗里斯解釋,對歷史學者而言,真正有用的不是把「大部分」字看對,而是把「名字、日期、金額、地名」這些低機率、不可預測的關鍵信息讀對;沒有這些,文本再優美也無法進入研究與檢索。「最後一哩的準確度,才是生產力的分水嶺。」
亨弗里斯與研究夥伴建了約50份、共1萬字的測試集,涵蓋18至19世紀的各式手寫風格與設備掃描,並以CER/WER評估。此前的里程碑是:Gemini 2.5 Pro在嚴格標準下達到接近人類的區間(CER約4%、WER約11%);若排除大小寫與標點這類不影響理解的爭議性錯誤,能降至CER約2%、WER約4%。這是系統性迭代的勝利,但離「專家級」仍有距離。
轉捩點:一個日記帳,逼出了推理本能
AI Studio近期被發現偶爾會出現A/B雙輸出供用戶投票,外界猜測這是新款Gemini(或許是Gemini 3)的灰度測試。亨弗里斯以同樣測試流程反覆重試,選取最難的五份手稿:混合語言、拼字錯亂、標點雜亂、大小寫不規則。
結果令人吃驚。在嚴格標準下,模型達到CER約1.7%、WER約6.5%;若剔除高度爭議的大小寫與標點,錯字率進一步降至CER約0.56%、WER約1.22%。這幾乎就是「專家水準」。
更關鍵的是第六份「挑戰項」:1758年奧爾巴尼商人的日記帳。這類帳冊的字跡連人都難以辨識,更別說是模型。其以舊式英貨幣(1英鎊=20先令、1先令=12便士)記載,且帳冊中非十進位、小計與合計交錯、項目收支交織、速記符號與刪線混用。傳統模型常在數字與結構上崩潰,例如把單價與合計混在一起、看不出重量或長度單位,甚至在輸出中重複卡死。
但這次, 未知Gemini不但把名字與商品對齊,更在一筆「塔糖(loaf sugar)」的記錄裡,自主判定「145」並非數字序列,而是重量的拆分,進而以價格「每磅1先令4便士(即16便士)」與總額「0鎊19先令1便士(即229便士)」倒推重量:229÷16=14.3125磅,即「14磅5盎司」。
亨弗里斯在文中解讀:「當模型開始自發地對齊上下文,它就跨過了理解的門檻。」
方法論拆解:視覺、語境、規則⋯3重對齊
視覺:從像素到字形的識別
亨弗里斯指出,未知Gemini展現了更穩定的「字形解碼」能力,把多種手寫體的變體、連筆與掃描噪音處理為一致的字符序列。這讓「基礎可讀性」不再是瓶頸,也使後續語境推理建立在乾淨的輸入上。
過去的痛點在於,手寫識別的誤差往往是「連鎖錯誤」:一個字母看錯,整串詞與句意就偏航。穩健的視覺,是所有後續推理的地基。
語境:將「不可預測信息」嵌入情景
名字、日期、金額這些在統計分佈上屬於「低頻且不可預測」的信息,傳統LLM易以高頻詞替代(如把罕見姓氏改成常見姓氏)。未知Gemini的不同在於:它在帳冊情境中,能辨識出「金額=單價×數量」以及「英貨幣的非十進位結構」,於是把低頻信息錨定在更大的語境網絡裡。
簡單來說,在「任務結構可被識別」的場景裡,模型可以透過上下文的一致性約束生成範圍,以避免機器幻覺。
規則:從隱性記憶抽取「世界規則」
最令人側目的,是模型並未被明確告知英制貨幣與重量的轉換規則,卻能在上下文中調用「每先令12便士、每磅16盎司」等隱性知識,並在兩個非十進位系統間來回換算,使「單價、數量、合計」三者閉環一致。
其關鍵在於「隱性符號化」:在足夠多的結構化樣本中,模型可以自己組裝出可操作的準規則,並以一致性檢查確保資料正確。
功能大躍進:從「抄寫員」到「審計師」?
綜合亨弗里斯的發現,這意味著未來AI不僅能把文本準確轉成可檢索的資料,還能對交易、度量衡、文化語境做出一致性解讀;在更廣的產業場景,例如醫療手寫病歷、物流簽收單、法務契據、製造現場點檢,AI模型可從「看懂」走向「查核」,以確保資料的可信度。
對商業來說,這是一個明確信號: 當模型能從語境生成規則,產品就能從工具躍遷為系統。
對Google而言,未知Gemini在AI Studio的試水,展示了從 「視覺→語境→規則→一致性」 的完整飛輪;對所有以資料為燃料的行業,這是一次重要的可靠性疊代。
延伸閱讀:65歲被28歲管,Mata首席科學家不幹了!一場人事動盪,揭社群巨頭技術路線大分歧
當輝達還在舞台走秀,Google悄悄亮出底牌了!第七代TPU「Ironwood」如何將AI戰爭升級至下半場?
資料來源:Generative History
