iPhone 11成本不到售價1/3!拆解iPhone 11 Pro Max,看究竟貴在哪?
iPhone 11成本不到售價1/3!拆解iPhone 11 Pro Max,看究竟貴在哪?

統計手機的BOM成本(物料清單Bill of Materials,簡稱BOM)在幾年前是一件非常流行的行為,很多消費者都以為這種純粹的物料成本能夠反映出賣一部手機廠家能賺多少錢。

當一款高端機的BOM成本被公佈後,評論區刷的最多的就是「XX品牌也太黑了,買一部手機賺這麼多錢。」 這麼說就像是把你生出來只需要計算你那幾斤肉,而忽略了父母前期與後期在財力精力上投入,不僅是一種偏見,更是荒謬的。

好在品牌們現在願意進一步宣傳自己在研發和專利上的投入,讓越來越多的人也明白手機作為日常生活中最「高精尖」的產品,背後究竟要投入多少人力財力。

iPhone 11 Pro Max成本拆解,三鏡頭最昂貴

近日,外媒Techinsights就拆解了一部iPhone 11 Pro Max 512GB版本,獲得了完整的物料清單併計算了整個BOM成本。根據Techinsights的統計,整個iPhone 11 Pro Max 512GB版本的BOM成本大概在490.5美元左右(約新台幣1.5萬元),從這個BOM成本來看已經是目前成本最昂貴的手機之一。

具體的拆解內容這裡就不多再贅述了,和iFixit的拆解類似,可以參考之前的文章。比起拆解來說,更有意思的是BOM成本上各個組件的價格以及佔據整體比例的變化。

Techinsights指出,在新的iPhone 11 Pro系列中,最昂貴的部分就是那個最顯眼的「 三鏡頭拍照系統 」,這部分的成本達到了73.5美元(約新台幣2,281元),超過了螢幕總成的66.5美元(約新台幣2,064元)以及A13仿生處理器的64美元(約新台幣1,987元)。

其它方面還包括儲存晶片58美元(約新台幣1,800元),射頻晶片元件30美元(約新台幣931元),PCB基板16.5美元(約新台幣513元)等等。這些來自不同供應商的元器件最終構成了一整個精密尖端的iPhone。雖然成本極為高昂,但不可否認的是iPhone售價也是高高在上,數一數二的BOM成本也不過只有皇帝版售價的不到三分之一。

BON-1
▲ BOM成本核算圖片來自:Techinsights
圖/ 愛范兒

不過需要指出的是,物料成本只是物料成本,就像開頭所說,如果用BOM成本去對比官方最終定價是一件非常荒謬的事,因為這中間並沒有算上營運和研發等多項中間以及隱形成本,更別說品牌定位和品牌溢價也會對最終定價產生影響。

跟Android陣營相比,iPhone 11 Pro Max成本不相上下

不過值得注意的是,對比去年Techinsights的iPhone XS Max BOM成本分析來說,最昂貴的部分發生了變化。iPhone XS Max最貴的部分是螢幕,成本為80.5美元(約新台幣2,495元),其次是A12仿生晶片,成本為72美元(約新台幣2,235元),儲存新品成本排在第三位64.5美元(約新台幣2,002元),而鏡頭部分僅為44美元(約新台幣1,366元)。(iPhone XS材料成本曝光,透露蘋果暴利背後的真相

BON-2
▲ S10 5G和S10+ BOM成本核算對比。圖片來自:Techinsights
圖/ 愛范兒

至於和Android陣營的對比,由於三星Note10+5G的拆解BOM核算並沒有放出來,我們先看一下三星S105G的拆解核算。在S105G上,當時那塊Infinity-O超感官全視螢幕的價格最高,達到了90美元(約新台幣2,794元),Exynos9820處理器也達到了70.5美元(約新台幣2,188元),整機BOM成本核算下來達到490.08美元(約新台幣15,209元),和iPhone 11 Pro Max不相上下。

總的來說,蘋果iPhone 11 Pro的物料成本進一步走高,基本上可以說是折疊螢幕手機之外成本最高的手機,在核心組件相比去年成本壓縮的情況下,三鏡頭成了事實上的,從研發到成本,從內部結構到外觀設計,都無可置疑的最大賣點。

責任編輯:陳映璇

本文授權轉載自:愛范兒

關鍵字: #Apple #iPhone
往下滑看下一篇文章
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路
從智慧助手到自主代理:博弘雲端如何帶領企業走上 AI 實踐之路

「代理式 AI 」(Agentic AI)的創新服務正在重新塑造企業對AI的想像:成為內部實際運行的數位員工,提升關鍵工作流程的效率。代理式AI的技術應用清楚指向一個核心趨勢:2025 年是 AI 邁向「代理式 AI」的起點,讓 AI 擁有決策自主權的技術轉型關鍵,2026 年這股浪潮將持續擴大並邁向規模化部署。

面對這股 AI Agent 浪潮,企業如何加速落地成為關鍵,博弘雲端以雲端與數據整合實力,結合零售、金融等產業經驗,提出 AI 系統整合商定位,協助企業從規劃、導入到維運,降低試錯風險,成為企業佈局 AI 的關鍵夥伴。

避開 AI 轉型冤枉路,企業該如何走對第一步?

博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題、生成內容的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工,應用場景也從單一任務延伸至多代理協作(Multi-Agent)模式。

「儘管 AI 前景看好,但這條導入之路並非一帆風順。」博弘雲端技術維運中心副總經理暨技術長宋青雲綜合多份市場調查報告指出,到了 2028 年,高達 70% 的重複性工作將被 AI 取代,但同時也有約 40% 的生成式 AI 專案面臨失敗風險;關鍵原因在於,企業常常低估了導入 GenAI 的整體難度——挑戰不僅來自 AI 相關技術的快速更迭,更涉及流程變革與人員適應。

2-RD096270.jpg
博弘雲端事業中心副總經理陳亭竹指出,AI 已經從過去被動回答問題的智慧助手,正式進化為具備自主執行能力、可跨系統協作的數位員工。面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時加速 AI 落地。
圖/ 數位時代

正因如此,企業在導入 AI 時,其實需要外部專業夥伴的協助,而博弘雲端不僅擁有導入 AI 應用所需的完整技術能力,涵蓋數據、雲端、應用開發、資安防禦與維運,可以一站式滿足企業需求,更能使企業在 AI 轉型過程中少走冤枉路。

宋青雲表示,許多企業在導入 AI 時,往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。

轉換率提升 50% 的關鍵:HAPPY GO 的 AI 落地實戰路徑

博弘雲端這套導入方法論,並非紙上談兵,而是已在多個實際場域中驗證成效;鼎鼎聯合行銷的 HAPPY GO 會員平台的 AI 轉型歷程,正是其最具代表性的案例之一。陳亭竹說明,HAPPY GO 過去曾面臨AI 落地應用的考驗:會員資料散落在不同部門與系統中,無法整合成完整的會員輪廓,亦難以對會員進行精準貼標與分眾行銷。

為此,博弘雲端先協助 HAPPY GO 進行會員資料的邏輯化與規格化,完成建置數據中台後,再依業務情境評估適合的 AI 模型,並且減少人工貼標的時間,逐步發展精準行銷、零售 MLOps(Machine Learning Operations,模型開發與維運管理)平台等 AI 應用。在穩固的數據基礎下,AI 應用成效也開始一一浮現:首先是 AI 市場調查應用,讓資料彙整與分析效率提升約 80%;透過 AI 個性化推薦機制,廣告點擊轉換率提升 50%。

3-RD096215.jpg
左、右為博弘雲端事業中心副總經理陳亭竹及技術維運中心副總經理暨技術長宋青雲。宋青雲分享企業導入案例,許多企業往往因過度期待、認知落差或流程改造不全,導致專案停留在測試階段,難以真正落地。這正是博弘雲端存在的關鍵價值——協助企業釐清方向,避免踏上產業內早已被證實「不可行」的方法或技術路徑,縮短從概念驗證到正式上線的過程,讓 AI 真正成為可被信賴、可持續運作的企業戰力。
圖/ 數位時代

整合 Databricks 與雲端服務,打造彈性高效的數據平台

在協助鼎鼎聯合行銷與其他客戶的實務經驗中,博弘雲端發現,底層數據架構是真正影響 AI 落地速度的關鍵之一,因與 Databricks 合作協助企業打造更具彈性與擴充性的數據平台,作為 AI 長期發展的基礎。

Databricks 以分散式資料處理框架(Apache Spark)為核心,能同時整合結構化與非結構化資料,並支援分散式資料處理、機器學習與進階分析等多元工作負載,讓企業免於在多個平台間反覆搬移資料,省下大量重複開發與系統整合的時間,從而加速 AI 應用從概念驗證、使用者驗收測試(UAT),一路推進到正式上線(Production)的過程,還能確保資料治理策略的一致性,有助於降低資料外洩與合規風險;此對於金融等高度重視資安與法規遵循的產業而言,更顯關鍵。

陳亭竹認為,Databricks 是企業在擴展 AI 應用時「進可攻、退可守」的重要選項。企業可將數據收納在雲端平台,當需要啟動新型 AI 或 Agent 專案時,再切換至 Databricks 進行開發與部署,待服務趨於穩定後,再轉回雲端平台,不僅兼顧開發效率與成本控管,也讓數據平台真正成為 AI 持續放大價值的關鍵基礎。

企業強化 AI 資安防禦的三個維度

隨著 AI 與 Agent 應用逐步深入企業核心流程,資訊安全與治理的重要性也隨之同步提升。對此,宋青雲提出建立完整 AI 資安防禦體系的 3 個維度。第一是資料治理層,企業在導入 AI 應用初期,就應做好資料分級與建立資料治理政策(Policy),明確定義高風險與隱私資料的使用邊界,並規範 AI Agent「能看什麼、說什麼、做什麼」,防止 AI 因執行錯誤而造成的資安風險。

第二是權限管理層,當 AI Agent 角色升級為數位員工時,企業也須比照人員管理方式為其設定明確的職務角色與權限範圍,包括可存取的資料類型與可執行的操作行為,防止因權限過大,讓 AI 成為新的資安破口。

第三為技術應用層,除了導入多重身份驗證、DLP 防制資料外洩、定期修補應用程式漏洞等既有資安防禦措施外,還需導入專為生成式 AI 設計的防禦機制,對 AI 的輸入指令與輸出內容進行雙向管控,降低指令注入攻擊(Prompt Injection)或惡意內容傳遞的風險。

4-RD096303.jpg
博弘雲端技術維運中心副總經理暨技術長宋青雲進一步說明「AI 應用下的資安考驗」,透過完善治理政策與角色權限,並設立專為生成式 AI 設計的防禦機制,降低 AI 安全隱私外洩的風險。
圖/ 數位時代

此外,博弘雲端也透過 MSSP 資安維運託管服務,從底層的 WAF、防火牆與入侵偵測,到針對 AI 模型特有弱點的持續掃描,提供 7×24 不間斷且即時的監控與防護。不僅能在系統出現漏洞時主動識別並修補漏洞,更可以即時監控活動,快速辨識潛在威脅。不僅如此,也能因應法規對 AI 可解釋性與可稽核性的要求,保留完整操作與決策紀錄,協助企業因應法規審查。

「AI Agent 已成為企業未來發展的必然方向,」陳亭竹強調,面對這樣的轉變,企業唯有採取「小步快跑、持續驗證」的方式,才能在控制風險的同時,加速 AI 落地。在這波變革浪潮中,博弘雲端不只是提供雲端服務技術的領航家,更是企業推動 AI 轉型的策略戰友。透過深厚的雲端與數據技術實力、跨產業的AI導入實務經驗,以及完善的資安維運託管服務,博弘雲端將持續協助企業把數據轉化為行動力,在 AI Agent 時代助企業實踐永續穩健的 AI 落地應用。

>>掌握AI 應用的新契機,立即聯繫博弘雲端專業顧問

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
2026 大重啟
© 2026 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓